Теплообменные аппараты ТТАИ
Сочетают в себе преимущества кожухотрубных и пластинчатых теплообменников без их недостатков.
РосТепло.ru - Информационная система по теплоснабжению
РосТепло.ру - всё о теплоснабжении в России

На правах рекламы

Измерение растворенного кислорода в технологических водах котельных и теплосетей. Приборный или химический анализ

А.Г. Кутин, ведущий специалист, ООО «ВЗОР», г. Нижний Новгород

Надежность работы оборудования, трубопроводов котельной и тепловой сети зависит в большой степени от качества водоподготовки, которая, в свою очередь, немыслима без должного контроля на всех участках технологического процесса. Контроль содержания растворенного кислорода в теплоэнергетике является важнейшей задачей для предотвращения повреждаемости металла кислородной коррозией.

Содержание кислорода в технологических водах нормируется жестко и обычно лежит в пределах, не превышающих 50 мкг/дм3. В отечественной теплоэнергетике середины-конца прошлого века для контроля содержания растворенного кислорода широко применялись химические методы анализа, изложенные, например, в ОСТ 34-70-953.23-92, ГОСТ-26449.3-85. Наиболее часто применяемым являлся визуально-колориметрический метод с использованием метиленового голубого индикатора, причем персоналом химических лабораторий иногда применялись не только типовые шкалы с максимальным определением кислорода до 100 мкг/дм3, но и с более широкими диапазонами до 200 и 400 мкг/дм3. Немногим реже встречается использование колориметрического метода с использованием индигокармина. На многих объектах использовались шкалы до 100, 140, 170 мкг/дм3. Достаточно редко встречается применение колориметрического метода с использованием сафранина «Т» со шкалой до 30 мкг/дм3. В некоторых случаях лабораториями применялся йодометрический анализ с возможностью измерения высоких концентраций (от 200 мкг/дм3) при контроле нарушений в работе оборудования, но применение данного анализа для контроля высоких концентраций кислорода не распространено, т.к. считается, что шкалы колориметрических методов достаточны не только для контроля нормативного содержания кислорода, но и для выявления превышения данных норм.

В последние два десятилетия в российской теплоэнергетике все более широко стали применяться анализаторы растворенного кислорода.

Опыт внедрения кислородомеров МАРК производства ООО «ВЗОР» более чем на 300 ТЭС и теплосетей России и ближнего зарубежья показал, что многие объекты работали с существенными нарушениями норм растворенного кислорода, и данные нарушения не всегда выявлялись колориметрическими методами, а йодометрический метод для определения высоких концентраций кислорода не применялся лабораториями, т.к. считалось, что нарушений нет либо они незначительны. Иногда, в случаях несоответствия показаний приборов и химического анализа, правильность показаний кислородомеров ставилась под сомнение как персоналом химических лабораторий, так и руководством. Необходимо отметить, что анализаторы растворенного кислорода МАРК всех поколений, включая самые ранние разработки, включены в госреестр СИ РФ. Также главным конструктором ООО «ВЗОР» Родионовым А.К. опубликована методика проверки такой важнейшей характеристики датчиков растворенного кислорода приборов МАРК как линейность [1]. Данная методика позволяет проверить погрешность прибора на всем диапазоне измерения (от 1-3 до 20000 мкг/дм3) и свидетельствует о высокой линейности характеристики датчиков (отклонение от линейности не более 0,5% на всем диапазоне).

Случаи несоответствия данных, полученных поверенными анализаторами растворенного кислорода и визуально-колориметрическим методом с использованием метиленового голубого, был выявлен и опубликован, например, специалистами ГУП ТЭК-СПб [2]. Выяснилось, что при реально больших концентрациях растворенного кислорода метиленовый голубой реактив дает существенное занижение результатов (рис.1-2).

При концентрации свыше 200 мкг/дм3 показания, полученные кислородомером, совпадают с методом Винклера, при этом анализ с использованием метиленового голубого не только не показывает высоких концентраций, но и главное, не показывает максимума шкалы 100 мкг/дм3, что не позволяет при использовании только лишь этого метода выявить серьезные нарушения в работе теплоэнергетического оборудования.

Для проверки достоверности анализа с применением метиленового голубого реактива авторами статьи была предложена методика насыщения деаэрированной воды кислородом воздуха, диффундирующего через стенки силиконового шланга. При постоянном потоке деаэрированной воды концентрация кислорода в ней оказывается пропорциональной длине шланга. На рис. 3 показаны результаты замеров приборным методом и методом с использованием метиленового голубого. Как видно из графиков, зависимость результатов измерений метиленовым голубым от длины шланга является весьма нелинейной. Результаты существенно занижены по сравнению с результатами приборного анализа.

Подобный метод позволяет оперативно и наглядно проводить «сверку» показаний кислородомеров с результатами химического анализа. Метод неоднократно использовался специалистами ООО «ВЗОР» совместно со специалистами теплоэнергетических предприятий для анализа качества проводимых кислородных измерений. На одной из ТЭС был проведен опыт сличения результатов замеров поверенным анализатором растворенного кислорода с результатами анализа двумя химическими методами, применявшимися на данной ТЭС. До этого между собой на станции два метода никогда не сравнивались. Результаты испытаний приведены на рис. 4.

Как видно из эксперимента, показания кислородомера пропорциональны длине шланга, показания химических анализов не только ниже, но, главное, не соответствуют друг другу, отличаясь в 2-3 раза. Сходимость есть только на нулевой точке.

В некоторых случаях при выявлении серьезных нарушений в работе энергетического оборудования с помощью кислородомера проводилась проверка реакции метода с использованием метиленового голубого на сырой воде, насыщенной кислородом (табл. 1).

Таблица 1. Пример искажения измерений при использовании метиленового голубого.

Очевидно, что в сырой недеаэрированной воде содержание растворенного кислорода составляет несколько тысяч микрограмм на литр и соответственно колориметрический метод должен давать окраску, соответствующую максимальному значению по шкале. Иногда это выполняется, однако выявлены десятки случаев, когда максимальной окраски не получалось, метод показывал некое промежуточное значение, что является ошибкой измерения в 50-200 (!) раз. Метод с индигокармином не давал максимальной окраски в сырой воде дважды за всю историю сравнений. При сравнении результатов приборного анализа с методом с использованием сафранина «Т» расхождений не было выявлено ни разу. В итоге можно отметить, что наиболее часто применяемый метод с использованием метиленового голубого может давать существенное занижение результатов при анализе растворенного кислорода и, как следствие, не удается выявить и устранить нарушения ведения водно-химического режима.

Надо отметить, что на достаточно большом количестве объектов при внедрении анализаторов растворенного кислорода их показания соответствовали результатам химического анализа. Как правило, на этих станциях концентрация растворенного кислорода не превышала установленных норм, а нарушения выявлялись и своевременно устранялись. Персонал таких объектов, в первую очередь, и отказывался от химического анализа в пользу приборного контроля. Причинами же серьезных искажений при измерении растворенного кислорода визуально-колориметрическими методами может быть как низкое качество химреактивов, так и ошибки персонала при проведении анализа. Для примера ниже показаны результаты измерений относительно высокой концентрации кислорода разными методами и разными операторами. Виден исключительно большой разброс полученных результатов (табл. 2).

Таблица 2. Результаты измерения кислорода различными методами и операторами.

ГРЭС, прямоточные котлы, блоки 300 МВт
метод питательная вода
МАРК-ЗОЗТ, МАРК-409, мкг/л 200-205
Индигокарминовый, мкг/л 90
Метод Винклера (лаборант), мкг/л 480
Метод Винклера (инженер), мкг/л 320

На данный момент подавляющее большинство химических лабораторий тепловых электростанций и тепловых сетей РФ перешли на приборный контроль растворенного кислорода. Тем не менее, есть объекты, где применение кислородомеров саботируется инженерным персоналом и лаборантами, либо находится под запретом руководства из-за высоких показаний и выявления неудовлетворительного кислородного режима. В журнале фиксируются некие нормативные цифры, полученные с помощью визуально-колориметрического анализа, притом что на объектах и теплосетях выявляются высокие уровни язвенной кислородной коррозии.

Анализ опыта внедрений кислородомеров МАРК на многих ТЭС показал, что примерно в 30% случаях, даже при использовании исправного поверенного анализатора растворенного кислорода, результат измерения оказывается некорректным. Самой распространенной ошибкой персонала было применение силиконовых присоединительных шлангов для подачи пробы к проточным кюветам. Диффузия кислорода из атмосферного воздуха приводила к сильным завышениям результатов. Типовые шланги из резины либо ПВХ не допускают диффузии кислорода из атмосферы в пробу. Тем не менее, они имеют свойство накапливать кислород в стенках при нахождении на воздухе, и при малых потоках пробы результаты могут быть завышены на несколько микрограмм. Рекомендуемая скорость потока через кювету датчика должна быть в пределах 400-800 мл/мин, однако на многих пробоотборных точках такой поток обеспечить невозможно в силу ряда причин, в первую очередь, проблем с охлаждением. Предприятием ВЗОР разработан принципиально новый кислородомер, адаптированный к реальным условиям эксплуатации на отечественных ТЭС и котельных.

Рис. 5. Измерительный узел кислородомера.

Конструкция их измерительного узла (см. рис. 5) позволяет отказаться от применения классических гибких шлангов для подачи пробы. Датчик с помощью специального устройства крепится на любую пробоотборную линию диаметром от 5 до 20 мм. Отказ от гибких полимерных шлангов позволяет производить измерения на любых, даже сверхмалых, скоростях потока (от 25 мл/мин) и производить измерения без искажений остаточным кислородом с внутренних стенок подводящих шлангов. Типовое время измерения 2-3 минуты. Также расширен температурный диапазон прибора, можно производить измерения на пробах с температурой до 70 ОС.

Литература

1. Родионов А.К. Методика измерения метрологических характеристик датчика растворенного кислорода // Теплоэнергетика. 2009. № 7. С. 2-6.

2. Слепченок В. С. Пути борьбы с кислородной внутренней коррозией//Новости теплоснабжения. 2005, № 4. С. 32-33.

А.Г. Кутин , Измерение растворенного кислорода в технологических водах котельных и теплосетей. Приборный или химический анализ

Источник: Журнал «Новости теплоснабжения» №08 (180) 2015 г. , www.rosteplo.ru/nt/180

Оставить комментарий

Тематические закладки (теги)

Тематические закладки - служат для сортировки и поиска материалов сайта по темам, которые задают пользователи сайта.

Похожие статьи: