Отраслевая конференция 
«Теплоснабжение-2019»
РосТепло.ru - Информационная система по теплоснабжению
РосТепло.ру - всё о теплоснабжении в России

О внедрении систем импульсной очистки поверхностей нагрева. Опыт сотрудничества с предприятиями котлостроения

А.П. Погребняк, заведующий лабораторией, В.Л. Кокорев, главный конструктор проекта, А.Л. Кокорев, ведущий инженер, И.О. Моисеенко, инженер 1 категории, А.В. Гультяев, ведущий инженер, Н.Н. Ефимова, ведущий конструктор, ОАО «НПО ЦКТИ», г. Санкт-Петербург

Разработка импульсных средств очистки поверхностей нагрева была начата специалистами НПО ЦКТИ в 1976-1978 гг. в связи с тем, что длительный опыт эксплуатации котлов промышленной и коммунальной энергетики, котлов-утилизаторов и энерготехнологических аппаратов различных производств, оборудованных традиционными средствами очистки, показал их недостаточную эффективность и надежность, которая в значительной мере снижала экономичность работы агрегатов (уменьшение КПД на 2-3%).

С момента создания в НПО ЦКТИ первых промышленных устройств газоимпульсной очистки (ГИО) началось сотрудничество с ведущими котлостроительными заводами (Белэнергомаш, БиКЗ, ДКМ). Так, например, в 1986 г. ГИО ЦКТИ был оборудован головной образец котла-утилизатора РКЖ-25/40 производства Белгородского котлостроительного завода, установленного за печью плавки медных концентратов в жидкой ванне на Балхашском горно-металлургическом комбинате [1], что обеспечило эффективную очистку его радиационных и конвективных поверхностей нагрева [2]. Применение ГИО ЦКТИ для очистки поверхностей нагрева котлов-утилизаторов производства БЗЭМ за печами кипящего слоя обжига колчедана в линии производства серной кислоты на ПО «Азот» города Мелеуз (КС-250 ВТКУ, КС-450ВТКУ) решило проблему охлаждения дымовых газов до уровня, позволяющего создать условия надежной работы электрофильтров [3].

Положительный опыт стал предпосылкой для выбора ГИО в качестве средства очистки при разработке НПО ЦКТИ проектов унифицированной серии котлов-утилизаторов для БЗЭМ, к выпуску которых было решено приступить в начале 90-х годов. [4].

ГИО также широко внедрялась взамен устройств дробевой очистки и паровой обдувки на котлах производства Бийского котлостроительного завода (котлы ДЕ, КЕ, ДКВР) и завода Дорогобужкотломаш (котлы КВ-ГМ, ПТВМ) [5]. Было налажено промышленное производство экономайзеров, оборудованных устройствами ГИО на Кусинском машиностроительном заводе.

В 1986 г. ГИО ЦКТИ была принята в промышленное производство на заводе «Ильмарине» (г. Таллин), а в 1990 г. начались поставки заводских систем ГИО на объекты промышленной и коммунальной энергетики СССР [6]. Однако, в 1991 г. эти поставки были прекращены, и многие котлостроительные заводы для комплектации своего оборудования начали выпуск устройств ГИО собственного производства, как правило, обладавшими рядом конструктивных недостатков.

Специалисты НПО ЦКТИ продолжали внедрять ГИО собственной разработки на котлах различного назначения, а с 1989 г. и на камерах конвекции нефтенагревательных печей. При этом шло совершенствование ГИО в направлении повышения их технического уровня, надежности и безопасности, в результате чего были созданы полностью автоматизированные системы ГИО.

Первые опытные и промышленные устройства ГИО были рассчитаны на практически полностью ручную схему управления исполнительными механизмами, что значительно затрудняло процесс их эксплуатации, вызывая необходимость частых настроек оборудования, требовало специальных навыков и дополнительной подготовки обслуживающего и эксплуатирующего персонала. Для устранения этих факторов были начаты разработки технических средств для автоматизации систем ГИО. Первая полностью автоматизированная система ГИО была внедрена в 1998 г. в рамках выполнения контракта с котлостроительной фирмой «AALBORG KEYSTONE» (Дания) на котле-утилизаторе, установленном за дизельгенераторами мощностью 30 МВт на электростанции Заводов Мертвого моря в Израиле (фото 1).

Фото 1. ГИО на котле-утилизаторе электростанции Заводов Мертвого моря (Израиль).

ГИО была установлена взамен ненадежных и малоэффективных устройств воздушной обдувки на пароперегревателе котла-утилизатора, работающего под наддувом до 3000 Па, что, в свою очередь, потребовало разработки конструктивных решений по защите узлов и трубопроводов ГИО от дымовых газов. При этом система ГИО устойчиво работала как в автоматическом (с пульта управления станции), так и в ручном режимах, выполняя все заданные программы на всех режимах работы котла во всем диапазоне давлений дымовых газов (от 0 до 3000 Па) без переналадки. Узлы аспирации, установленные на выхлопных соплах импульсных камер, обеспечивали надежную защиту камер и трубной системы ГИО от дымовых газов. ГИО обеспечила эффективную очистку поверхностей нагрева пароперегревателя, расположенных вне зоны шлакования и холодную расшлаковку пакетов пароперегревателя, находящихся в зоне шлакования [5].

В 1999 г. автоматизированной системой ГИО был оборудован котел OL-20 фирмы «Рафако» (Польша) с топкой для сжигания подсолнечной лузги, который был сдан в промышленную эксплуатацию на Запорожском МЖК.

В процессе внедрения ГИО на оборудовании отечественных и зарубежных предприятий котлостроения в период с 2000 по 2005 г. в ОАО «НПО ЦКТИ» были созданы системы с унифицированными узлами и комплексами автоматического управления (фото 2).

Фото 2. Унифицированные узлы системы ГИО для котельного агрегата.

В 2006 г. на нефтенагревательной печи ВДМ-1, проекта и поставки фирмы «Foster Wheeler» для завода «ЛУКОЙЛ – Нефтохим – Бургас» АД (Болгария), система ГИО была установлена взамен предусмотренной проектом печи системы очистки с использованием паровых обдувочных аппаратов (фото 3) и обеспечила эффективную очистку оребренных змеевиков камеры конвекции при значительном сокращении металлоемкости, габаритов и эксплуатационных затрат по сравнению с паровой обдувкой [7].

Фото 3. Элементы системы ГИО на печи ВДМ-1 «ЛУКОЙЛ – Нефтохим-Бургас» АД (Болгария).

Работы с зарубежными котлостроительными фирмами способствовали повышению технического уровня и надежности систем ГИО, что внесло свой вклад при внедрении ГИО ЦКТИ и для объектов в России.

С 2006 г. действует договор между ОАО «Дорогобужкотломаш» и ОАО «НПО ЦКТИ» на поставку технологических блоков для систем ГИО водогрейных котлов, выпускаемых заводом. В настоящее время осуществлена поставка около 40 технологических блоков. При этом импульсные камеры и трубопроводы производятся на заводе. Такая форма сотрудничества выгодна для обеих сторон.

С середины 2000-х г.г. возобновились поставки автоматизированных систем ГИО ЦКТИ на ведущие котлостроительные заводы России и стран СНГ. Для Белозерского энергомашиностроительного завода (Белоруссия) были разработаны проекты для серии головных образцов котлов Е-30-3,9-440ДФ, Е-20-3,9-440ДФ, Е-10-3,9-440ДФ, сжигающих торф и древесные отходы. ГИО котла Е-30-3,9-440ДФ была сдана в эксплуатацию на Белорусской ГРЭС-1 в марте 2013 г. В ближайшее время планируется поставка ГИО для котлов Е-20-3,9-440ДФ и Е-10-3,9-440ДФ. Для данных типов котлов был разработан новый комплекс управления коллекторной схемой с общим технологическим блоком и электромагнитными клапанами подачи газовоздушной смеси к нескольким группам импульсных камер. В мае 2013 года для вновь строящегося котла КВГМ-139,6-150, Новосибирской ТЭЦ-2 была выполнена поставка на Бийский котлостроительный завод. В настоящее время разработан проект и планируется поставка для ОАО «Сибэнергомаш» двух ГИО для котлов Е-100-1,6-535ГМН, работающих под наддувом 4000 Па, предназначенных для установки на ТЭЦ Ангарского нефтехимического комбината. Подача воздуха на аспирацию предусмотрена от котельного вентилятора.

В 2008 г. автоматизированная система ГИО была внедрена на двух водогрейных котлах КВГМ-100 котельной №1 ФГУП «Горно-химический комбинат» (г. Железногорск, Красноярский край), работающих на высокосернистом мазуте.

Предусмотренная проектом дробеочистка не эксплуатировалась ввиду ее низкой эффективности и надежности. До внедрения ГИО каждые два месяца котлы останавливали для проведения очистки вручную, методом водяной обмывки поверхностей нагрева по причине значительного роста температуры уходящих газов (более чем на 60° С) и сопротивления газового тракта, что приводило к невозможности работы котлов с нагрузкой выше 50% от номинала. Водяная обмывка в условиях отложений серы на элементах конвективных пакетов вызывала сернокислотную коррозию металла, что сокращало срок службы поверхностей нагрева примерно в два раза. Кроме того, возникала проблема нейтрализации кислой обмывочной воды.

При выполнении этой работы в рассечках конвективных пакетов каждого котла были установлены по шесть импульсных камер диаметром 325 мм, соединенных в три группы. Газовоздушная смесь была подведена к каждой группе камер от технологических блоков (по 3 шт. на каждом котле), выполняющих все необходимые функции в соответствии с алгоритмом работы. Управление системой ГИО осуществляется из блока управления, выполненного на основе промышленного контроллера и расположенного в помещении операторной. Очистка конвективных пакетов производится при последовательной работе импульсных камер по ходу дымовых газов.

В результате внедрения систем ГИО КПД на каждом котле увеличилось на 1-1,5%, а регулярное включение ГИО один раз в сутки обеспечивает содержание поверхностей нагрева в эксплуатационно-чистом состоянии и поддерживает температуры уходящих газов на уровне регламентных значений. Снижение сопротивления по тракту дымовых газов позволяет обеспечить работу котлов с номинальной нагрузкой. Отказ от водных обмывок существенно увеличивает срок службы поверхностей нагрева. Увеличилась выработка тепловой энергии за счет исключения останова котлов на проведение трудоемких ручных очисток. Эксплуатационные расходы на ГИО незначительны: один баллон с пропаном емкостью 50 л обеспечивает работу системы ГИО в течение трех недель, а потребляемая электрическая мощность не превышает 2 кВт при длительности цикла очистки 10-12 мин.

Продолжается сотрудничество и с зарубежными заказчиками. Так, в августе 2013 г. закончены работы по проектированию системы ГИО для котла-утилизатора К-35/2,0-130, предназначенного для установки за блоком регенерации катализатора в линии каталитического крекинга завода «ЛУКОЙЛ – Нефтохим-Бургас» АД (Болгария). Котел-утилизатор должен работать под наддувом до 10000 Па, что потребовало при разработке проекта предусмотреть защиту узлов и трубопроводов ГИО от проникновения в них дымовых газов за счет постоянной подачи воздуха от собственного вентилятора ГИО в узлы аспирации, расположенные между импульсными камерами и газоходом котла, в связи с чем были приняты новые конструктивные и схемные решения по совершенствованию комплекса управления для применения в конкретных условиях эксплуатации. В настоящее время ведутся работы по изготовлению и комплектации системы ГИО, сертификации ее на соответствие требованиям Директивы Европейского Союза 97/23/EC с целью получения международного сертификата и права нанесения СЕ маркировки. Ввод в эксплуатацию намечен в апреле 2014 г.

Наряду с совершенствованием и внедрением систем ГИО, специалисты НПО ЦКТИ продолжили работы по исследованию и разработке систем пневмоимпульсной очистки (ПИО), начало которым было положено около 35 лет назад [8]. Широкое применение системы пневмоимпульсной очистки получили в странах Западной Европы и США [9]. В последние годы некоторые фирмы вышли на отечественный рынок. Началом возобновления российских работ в этой области стала разработка ОАО «НПО ЦКТИ» технического проекта системы ПИО в опытно-промышленном варианте для котлов КВ-Р-8-115 ОАО «Ковровкотломаш». При разработке этого проекта был использован ряд новых технических решений, повышающих надежность, эффективность, простоту эксплуатации системы ПИО, расширяющих сферу ее применения [10].

Литература

1. Погребняк А.П., Вальдман А.М. Опыт освоения котлов-утилизаторов для печей плавки цветных металлов // Труды ЦКТИ. 1989. Вып. 250.

2. Гдалевский И.Я., Гришин В.И., Погребняк А.П., Вальдман А.М. Опыт промышленного внедрения газоимпульсной очистки на водогрейных, паровых котлах и котлах-утилизаторах // Труды ЦКТИ. 1989. Вып. 248.

3. Изотов Ю. П., Голубов Е. А., Кочеров М. М. Повышение эффективности работы поверхностей нагрева котлов-утилизаторов для печей обжига колчедана в кипящем слое.

4. Котлы утилизаторы и котлы энерготехнологические: Отраслевой каталог. М., 1990.

5. Романов В.Ф., Погребняк А.П., Воеводин С.И., Яковлев В.И., Кокорев В.Л. Результаты освоения автоматизированных систем газоимпульсной очистки (ГИО) конструкции ЦКТИ на котлах промышленной и коммунальной энергетики и на технологических печах нефтеперерабатывающих заводов // Труды ЦКТИ. 2002. Вып. 287.

6. Аппараты и устройства очистки поверхностей нагрева: Отраслевой каталог. М., 1987.

7. Погребняк А. П., Кокорев В. Л., Воеводин С. И., Кокорев А. Л., Гультяев А. В. Ефимова Н. Н. Результаты внедрения автоматизированных систем ГИО ЦКТИ на нефтенагревательных печах, котлах-утилизаторах и водогрейных котлах // Труды ЦКТИ. 2009. Выпуск 298.

8. А. с. № 611101 СССР Устройство для импульсной очистки поверхностей нагрева парогенераторов от наружных отложений / Погребняк и др., 1978.

9. Погребняк А.П., Кокорев В.Л., Воеводин С.И., Кокорев А.Л., Семенова С.А. Устройства импульсной и акустической очистки теплообменных и технологических поверхностей. Создание, освоение и перспективы // Труды ЦКТИ. 2009. Вып. 298.

10. Пат. 123509 РФ. Устройство для импульсной очистки поверхностей нагрева от наружных отложений / Погребняк А.П., Кокорев В.Л., Кокорев А.Л., Моисеенко И.О. Опубл. 27.12.2012. Бюл. № 36.

А.П. Погребняк, В.Л. Кокорев, А.Л. Кокорев, И.О. Моисеенко, А.В. Гультяев, Н.Н. Ефимова, О внедрении систем импульсной очистки поверхностей нагрева. Опыт сотрудничества с предприятиями котлостроения

Источник: Журнал "Новости теплоснабжения" № 1, 2014 г., www.ntsn.ru/o-zhurnale/archiv/2014/soderzhanie-nt-1-161-2014-g.html

Оставить комментарий

Тематические закладки (теги)

Тематические закладки - служат для сортировки и поиска материалов сайта по темам, которые задают пользователи сайта.

Похожие статьи:

Подбор теплообменника!

Теплообменник ТТАИ для ГВС, отопления, промпроизводств. Эффективней пластинчатого!

+7(495)741-20-28, info@ntsn.ru

Программы Auditor

Отраслевая конференция «Теплоснабжение-2019»

Москва, 22-24 октября 2019 г.
Примите участие!

Подробнее