Отраслевая конференция 
«Теплоснабжение-2019»
РосТепло.ru - Информационная система по теплоснабжению
РосТепло.ру - всё о теплоснабжении в России

Гелиосистема холодотеплоснабжения

Осадчий Г.Б., инженер

Постоянно встает вопрос о применении нетрадиционных источников энергии для теплоснабжения для суровых климатических условий России. Одним из таких источников часто рассматривается использование геотермального.

Экономическая эффективность применения геотермального тепла зависит от многих факторов, основными из которых являются стоимость (из-за технологических и геологических трудностей стоимость бурения возрастает экспоненциально с увеличением глубины бурения) скважин, начальная, пластовая температура воды (сухой породы), дебит скважины и полезно используемый теплоперепад в энергоустановке. Между температурой, выведенной на поверхность воды (флюида) и её дебитом существует прямая зависимость. Чем выше дебит, тем меньше потери тепла и тем меньше температура воды на устье отличается от её температуры в пластовых условиях.

Рассмотрим это на примере Омской области.

Известно, что геотемпературное поле каждого участка земной коры индивидуально, в частности в Западносибирском бассейне.

Одной из основных причин, влияющих на геотермический режим его недр, является динамика (движение) подземных вод в Северный Ледовитый океан. Чем как не этим движением можно объяснить более низкую температуру подземных вод, в частности, в южной части Омского региона на глубинах до 2500 – 3000 м, примыкающих к главным областям питания бассейна (Казахский мелкосопочник, Алтай, Саяны). В рыхлых отложениях региона, мощностью до 3 – 4 км, заключен ряд водоносных комплексов, медленное движение вод в которых направлено с юго-востока и юга, от главных областей питания, на север и северо-запад — к областям стока [1].

Кроме этого, одной из важнейших особенностей геотемпературного поля Западносибирского бассейна является его существенная нестационарность, возникшая в результате изменений климата, ледникового периода. В ледниковый период при формировании криолитозоны геотермический режим был существенно преобразован до глубины 3 – 3,5 км. Расчеты [2] показывают, что при изменении температуры нейтрального слоя на 5 – 20 ⁰С (ледниковый период — наше время), время установления стационарного режима равно 0,4, 0,8, 1,2 и 2,1 млн лет для отложений мощностью соответственно 1, 2, 3 и 5 км.

Современные геотермальные градиенты в зоне Западной Сибири (56 ⁰ северной широты) до глубин 2 – 2,5 км характеризуются меньшим по сравнению с нормальными величинами. Особенно сильное отклонение отмечается на глубинах до 1 км (40 – 60 % нормального градиента). Это является следствием длительного существования здесь толщи мерзлых пород её последующего, сравнительно быстрого протаивания. Породы осадочного чехла, охлажденные за несколько тысячелетий существования криолитозоны до 25 – 30 ⁰С по всему разрезу, одновременно с деградацией мощной толщи мнолетнемерзлых пород вступили в фазу интенсивного прогревания. Медленное прогревание указанной толщи может быть объяснено наличием двух теплоизолирующих глинистых толщь. Нижняя глинистая толща в Омско-Тарском Прииртышье имеет мощность 170 – 350 м и располагается на глубине 1900 – 2300 м, а верхняя имеет мощность 500 – 800 м и залегает на глубине 170 – 300 м.

Как видим из приведенного, использование приповерхностного геотермального тепла на территории России, имеет свои ограничения. А для использования глубинного тепла на юге Сибири требуется бурение глубиной более 4 км, что не под силу малым и средним предприятиям.

А неэффективность традиционного централизованного теплоснабжения в малых поселениях, подтверждается математической моделью управления аварийными запасами материально-технических ресурсов на их объектах в случае аварийного ремонта.

Рассмотрим модель оптимизации времени выполнения аварийных строительно-монтажных работ по источнику [3], в том числе, когда снабжающая организация (склад) находится далеко.

Момент отказа — случайная величина, распределенная по экспоненциальному закону:

Потребность в трубах для аварийных строительных работ , также случайная величина, распределенная по экспоненциальному закону:

В момент времени завезено определенное количество труб . При этом стоимость доставки труб на место складирования при удельной стоимости будет равна:

Если этого запаса хватает для восстановления работоспособности трубопровода (), то продолжительность ремонтно-строительных работ определим временем Если этого запаса не хватает (), то продолжительность ремонтно-строительных работ определим временем Ущерб от недопоставки транспортируемого по трубопроводу продукта (тепла) потребителям (в единицу времени) определим величиной Таким образом, можно определить средние затраты на материально-техническое обеспечение строительства для устранения аварийной ситуации по отношению:

где . Это для случая, когда отдаленность затрат во времени не учитывается и интервал времени никак не влияет на затраты.

Если отдаленность затрат учитывается, то средние затраты будут равны:

где – коэффициент, учитывающий отдаленность затрат.

Преобразуем соотношение к виду:

Дифференцируем и приравниваем нулю производную:

Отсюда получаем:

Если выполняется условие то минимум средних затрат существует. Кроме того, величина представляет собой вероятность дефицита. В некоторых случаях можно ввести ограничение: вероятность дефицита меньше некоторой заранее заданной величины

Таким образом, если выполняется неравенство то ограничение автоматически учитывается. Отсюда следует, что величина должна быть достаточно малой. Тогда существует минимум.

Если а это происходит при очень большой стоимости , то минимум не существует, т.е. не существует оптимального решения задачи материально-технического обеспечения ресурсами малых поселений в аварийных ситуациях на теплотрассах.

Как альтернативна, рядом ученых-практиков Германии проблемы теплоснабжения предлагается решать с помощью возведения зданий с нулевым потреблением энергии (энергопассивные дома).

Термин «Энергопассивный дом» относится к строительным стандартам. Эти стандарты могут быть выполнены с использованием различных технологий, конструкций и материалов. Энергопассивные дома имеют близкое к нулю потребление внешнего тепла, т.к. для обеспечения комфортной температуры в течение отопительного сезона достаточно поступления солнечной радиации через окна, а также теплового излучения от бытовых приборов и людей (Однако поступление тепла от приборов связано с использованием электроэнергии, а при её производстве по конденсатному циклу (когда для энергопассивных домов тепловая энергия не нужна) будет происходить рассеивание тепла (до 60 % от полученного при сжигании топлива) через градирни. В связи с этим остается открытым вопрос — куда относить эти потери тепла? Логично было бы относить эти потери на баланс таких энергопассивных домов.

При значительной инсоляции зимой, автономная система электро- и теплоснабжения таких частных домов состоит, как правило, из фотоэлектрических преобразователей и солнечных нагревателей, расположенных на крыше, но они могут быть применены не везде.

У каждой страны есть свои приоритеты в сфере энергетики — отвечающие нуждам промышленности и укладу жизни.

Предлагаемая система холодотеплоснабжения (рисунки 1, 2), разработанная в Конструкторском Бюро Альтернативной энергетики «ВоДОмёт» (г. Омск), как никакая другая учитывает климатические условия средней полосы России и юга. Принципиально не отличаясь от ранее описанных систем [4, 5], она конкретизирована в деталях и содержит основные данные по выполненному экономическому расчету, с учетом экологического фактора.

Принцип работы системы солнечного холодоснабжения (гелиохолодильника), обеспечивающей поддержание летом соответствующей температуры в холодильной камере отдельно стоящего здания, состоит в следующем. Теплота солнечного излучения 1 (рисунок 1), аккумулируемая солнечным прудом 16, по тепловой трубе (термосифону) 14 подается к хладомёту 12 (двигателю Стирлинга с компрессором), где в термодинамических циклах преобразуется в поток хладагента. Неиспользованная в термодинамических циклах хладомёта теплота по тепловой трубе 11 отводится в котлован 9, заполненный льдом, вызывая его таяние, или рассеивается в окружающее пространство. Концентратор 2 обеспечивают увеличение поступления солнечной энергии в пруд. А теплоизоляционное покрытие 6 предотвращает таяние льда котлована 9 от наружного воздуха.

1 – солнечное излучение; 2 – концентратор солнечного излучения; 3 – испаритель холодильника; 4 – дроссель, 5 – конденсатор холодильника; 6 – теплоизоляционное покрытие; 7 – регулятор потока пара хладагента; 8 – воздуховод; 9 – котлован со льдом; 10 – маслопровод; 11, 14 – тепловые гравитационные трубы (термосифоны); 12 – хладомёт (двигатель Стирлинга с компрессором); 13 – водопровод; 15 – грунт; 16 – солнечный соляной пруд

Рисунок 1 – Схема системы среднетемпературного холодоснабжения (гелиохолодильника)

Система предназначена для охлаждения замкнутых объемов посредством циркуляции хладагента по рабочему контуру гелиохолодильника: конденсатор 5 – дроссель 4 – испаритель 3. В испарителе 3 происходит парообразование низкокипящего рабочего тела – хладагента. Образующийся пар хладагента сжимается в хладомёте (компрессоре) с повышением температуры (зависит от степени сжатия) и затем поступает в конденсатор, где конденсируется, отдавая теплоту фазового перехода хладагента в котлован со льдом или в окружающее пространство (воздух). Образующийся при этом жидкий хладагент подается в дроссель 4; за ним давление понижается, и хладагент поступает в испаритель 3. Цикл повторяется.

Теплота, забираемая из помещений будет или аккумулироваться котлованом 9 посредством части конденсатора 5, расположенной в котловане 9 и под ним, что обеспечивает наиболее полное аккумулирование низкопотенциальной теплоты для использования её в будущем (зимой), или часть теплоты может рассеиваться в окружающую среду через его (конденсатора 5) верхнюю наружную часть, расположенную на открытом воздухе. Выбор режима работы определяется положением заслонок в регуляторе потока 7, в зависимости от температуры окружающего воздуха (день — ночь, весна — осень) и состояния котлована — температуры в нем. А также от объема котлована, количества теплоты, которую, он может принять. Преобладающее, естественное направление потока пара хладагента при открытом регуляторе потока 7 в конденсаторе 5 определяется тем, какая из его частей; расположенная в котловане или на открытом воздухе имеет более низкую температуру. Температурой частей конденсатора определяется скорость конденсации в них пара хладагента, а значит и понижение в них давления. Часть конденсатора 5, расположенная над котлованом летом будет иметь наименьшую температуру с 23 до 5 ч, когда разность дневных и ночных температур для средней полосы России составляет 11 – 16 ⁰С (на Северном Кавказе, Нижнем Поволжье и юге Дальнего Востока она ещё больше). Такое разветвление конденсатора очень актуально, т.к. как показывают исследования, у нас нарастает изменчивость погоды — изменчивость температуры и всех сопутствующих элементов. Изменчивость суточная, годовая — какая угодно.

Вода (воздух), проходящая по водопроводу (воздуховоду) 13, нагревается до 50 – 90 ⁰С (в зависимости от скорости движения) удовлетворяя потребности в горячей воде (воздухе) в течение всего лета, до глубокой осени. Кондиционирование помещений можно осуществлять охлажденным до 5 – 8 ⁰С воздухом, поступающим в помещения через воздуховод 8, расположенный во льду котлована.

Охлаждение помещений можно осуществлять также за счет циркуляции масла; маслопровод 10 — охлаждаемое помещение.

К осени температура талой воды в котловане поднимается до 10 ⁰С.

Актуальность разработки системы холодоснабжения связана и с существующим прогнозом изменений климата России до 2015 г. В среднем за 10 лет наши климатологи ожидают повышение температуры на 0,6 ⁰С, и уменьшение количества осадков. В связи с этим появятся проблемы с водностью рек. Это скажется на работе ГЭС. В летнее время участятся опасные для здоровья крупные волны тепла. А это в свою очередь повлияет на работу учреждений социальной сферы и медицины.

Как видим при производстве холода и теплоты данная система имеет минимальное количество технологических переделов.

Система среднетемпературного холодоснабжения на зиму может быть преобразована в систему теплоснабжения согласно рисунку 2.

1 – солнечное излучение; 2, 7 – теплоизоляционное покрытие; 3 – конденсатор теплового насоса; 4 – дроссель; 5, 10 – регулятор потока хладагента; 6 – испаритель теплового насоса; 8 – воздуховод; 9 – котлован с талой водой; 11 – хладомёт (двигатель Стирлинга с компрессором); 12 – тепловая гравитационная труба (термосифон); 13 –грунт; 14 – солнечный соляной пруд

Рисунок 2 – Схема системы теплоснабжения (теплоприводного теплового насоса — ТНТП)

Принцип работы системы теплоснабжения, обеспечивающей зимой поддержание соответствующей температуры в помещениях отдельно стоящего здания, происходит следующим образом. Хладомёт 11 (двигатель Стирлинга с компрессором) обеспечивает обогрев помещений посредством циркуляции хладагента по рабочему контуру ТНТП: конденсатор 3 – дроссель 4 – испаритель 6. Хладомёт 11 работает от энергии сгорания биометана, обогревающего укороченную тепловую трубу 12 (конструкция топок-форсунок условно не показана), или другого источника. В качестве органического топлива для обогрева тепловой трубы 12 может быть использован торф, высушенный с использованием солнечной энергии.

В испарителе 6 за счет тепловой энергии воды 9 происходит парообразование хладагента, пар далее подогревается от теплоты грунтов, расположенных под котлованом, зданием и под прудом (13) и рассола пруда 14. Подогретый пар сжимается в компрессоре с повышением температуры, затем горячий пар хладагента поступает в конденсатор 3, где он, вначале частично охлаждается, затем конденсируясь, отдает теплоту фазового перехода на обогрев помещений. Конденсат хладагента поступает в дроссель 4, где его давление понижается, а затем – в испаритель 6. Цикл повторяется.

Перед дросселем 4 конденсат хладагента может переохлаждаться за счет поступающего в здание холодного воздуха или воды.

После дросселя 4 теплота на испарение хладагента в испарителе 6 может забираться как из котлована, так и из окружающего воздуха, соответственно через части испарителя 6, расположенные в котловане или над котлованом 9. Это зависит от положения заслонок регулятора потока 5 хладагента. При движении испаряющегося жидкого хладагента по части испарителя, расположенной в котловане обеспечивается быстрое охлаждение воды котлована и образование в нем льда — аккумулирование холода для использования летом. При движении испаряющегося хладагента по части испарителя, расположенной над котлованом (осенью, в оттепели, теплым зимним днем или когда колебания температуры напоминают «пилу») экономится низкопотенциальная теплота котлована для морозного периода. Выбор режима работы определяется положением заслонок в регуляторе потока 5 в зависимости от температуры окружающего воздуха (день — ночь, осень — весна) и состояния котлована — температуры в нем. А также от объема воды в котловане, количества теплоты, которую она может отдать. Преобладающее, естественное направление потока жидкого хладагента при открытом регуляторе потока 5 в конденсаторе 6 определяется тем, какая из его частей; расположенная в котловане или на открытом воздухе имеет более высокую температуру. Температурой этих частей испарителя определяется скорость испарения в них хладагента, а значит и повышение давления. Осенью прохладная вода в котловане может быть подогрета, если воздух из здания удалять через воздуховод 8 или заменена на теплую воду, с температурой до 20 – 25 ⁰С. Подогрев воды в котловане можно осуществить за счет её циркуляции через плоский солнечный коллектор в период «бабьего лета».

Конденсатор 3, его наружные поверхности будут иметь температуру не более 60 – 65 ⁰С, что само по себе хорошо с экологической точки зрения, поскольку в жилых помещениях необходимо ограничивать температуру поверхности отопительных приборов. Это требование обусловлено явлением разложения и сухой возгонки органической пыли, сопровождающимся выделением вредных веществ, в частности окиси углерода. Разложение пыли начинается при температуре 65 – 70 ⁰С и интенсивно протекает на поверхности, имеющей температуру более 80 ⁰С.

Кода на улице тепло тогда потребность в отоплении уменьшается; так что пониженная теплопередача (теплоотдача) уличный воздух — наружный испаритель будет обеспечивать меньший (для исключения перетопа) забор теплоты из атмосферы. Так зима 2006-2007 гг. на юге Сибири была экстремально теплая. Она пришла на 2 – 3 декады позже обычных сроков. Средняя температура декабря была минус 6 ⁰С, а средняя температура января минус 9 ⁰С (вместо среднегодовой минус 19 – 20 ⁰С). Практически зимы как таковой на юге Сибири не было. Жили в условиях предзимья. За всю зиму было всего два холодных периода: третьи декады ноября и февраля. Все остальные периоды были экстремально теплыми. В конце января наступила оттепель. Температура поднялась до + 6 и + 12 ⁰С. А вот зима 2005-2006 гг. была совершенно жуткая.

В процессе работы ТНТП (системы) температура воды в котловане понижается, образуется лед (котлован «готовится» к приему теплоты летом), может замерзнуть и грунт под котлованом. Заметно снижается температура грунта 13 и рассола пруда 14, обеспечивая обогрев помещений аккумулированной солнечной энергий и сбросным теплом системы работавшей летом в режиме солнечной холодильной установки.

В рассматриваемом случае, на испарителе 6, расположенном в котловане 9 и под котлованом образования ледяных наростов не является непреодолимым препятствием для эксплуатации системы. Когда вся вода в котловане 9 замерзнет, и дальнейшая эксплуатация ТНТП с этим участком станет малоэффективной из-за понижения температуры в испарителе, то за счет управления заслонкой регулятора потока 10 можно обеспечить движение хладагента, по контуру испарения, минуя котлован 9. Этот режим работы ТНТП может быть эффективен весной, когда пруд освободился ото льда, и идет аккумулирование солнечной энергии придонным слоем пруда, и когда дальнейшее охлаждение котлована не целесообразно. Однако этот режим можно применять и зимой для восстановления (выравнивания по массиву) температуры котлована. Кроме того, если в системе применить электроприводной компрессор, то этот режим, с присущим ему более высоким коэффициентом трансформации, можно использовать для теплоснабжения ночью, когда более холодно, когда потребность в тепле больше, а стоимость электроэнергии низкая. Днем же, когда стоимость электроэнергии высокая, но требуется меньше тепла на отопление можно применять ТНТП с использованием теплоты котлована, при более низком коэффициенте трансформации.

Или наоборот. Режимы работы зависят от конкретных значений приведенных параметров.

При продолжительных морозных зимах, а также для объектов с малым объемом котлована пополнять его теплотой зимой можно за счет отвода «отработавшего» воздуха из здания по воздуховоду 8. И при этом «подогревать» поступающий в помещения свежий морозный воздух можно в параллельно расположенном в котловане воздуховоде, соединенном с системой вентиляции.

Для повышения теплоизоляции котлована и одновременного аккумулирования холода, для летнего периода, снег, убираемый с прилегающих территорий можно складировать над котлованом. Также ранней весной снег с акватории пруда можно использовать для увеличения запасов холода котлована, накрыв его (снег) демонтированным теплоизоляционным покрытием пруда.

Такая выработка энергий— это, по существу комбинированный способ производства холода и теплоты. Только холод, аккумулированный водой котлована зимой, расходуется летом (рисунок 3), а теплота, аккумулированная водой котлована летом, расходуется зимой посредством ТНТП.

Рисунок 3 – Схемы всех генерируемых системой холодоснабжения (летом) и системой теплоснабжения (зимой) видов энергий

На рисунке 3 приведены все дифференцированные виды энергии, которые можно получать летом за счет солнечного соляного пруда, котлована со льдом и окружающего воздуха системой холодоснабжения и те, которые можно получать зимой системой теплоснабжения.

Как видно из рисунка 3 разнообразие генерируемых видов энергии системой холодотеплоснабжения обеспечивается в основном за счет энергий всего двух основных сооружений — пруда и котлована и биометана. Это позволяет при эксплуатации системы вырабатывать напрямую тот вид энергии, который нужен в конкретное время в конкретном месте без переналадки оборудования.

Результаты проведенного расчета эколого-экономической эффективности, использования энергий солнечного соляного пруда, льда (воды) котлована, воздуха и биометана (части вырабатываемых энергий представленных на рисунке 3) системами: холодоснабжения; теплоснабжения; горячего водоснабжения представлены ниже.

Расчет систем проведен для широты Омской области (55 ⁰ северной широты) для зоны недоступности теплоснабжения от городской ТЭЦ. Площадь солнечного соляного пруда (зоны аккумулирования солнечного излучения горячим рассолом), принята равной (Радиус пруда 5 м. Размеры пруда приняты из-за ограничения по конструктивным соображениям — площади концентратора (рисунок 4) и связано с периодически возникающими ветровыми нагрузками). Общий, расчетный, объем котлована для приема всей теплоты, неиспользованной в термодинамических циклах — 332 м3.

Рисунок 4 – Конструктивная схема концентрирования солнечной энергии в солнечный соляной пруд концентратором солнечной энергии за счет слежения за движением Солнца по небосводу.

В данной статье, из-за наложенных на её объем ограничений, раскрыта только в общем виде оригинальная конструкция концентратора, и вытекающие из неё преимущества по концентрации в солнечный пруд солнечной энергии, рисунок 4 и не раскрыта выработка биометана (биогаза) с использованием энергии солнечного соляного пруда. Эти технические решения, при заинтересованности читателей данным направлением энергетики возобновляемых источников энергии (ВИЭ), будут представлены в дальнейшем.

Материалы, относящиеся к результатам расчета эколого-экономической эффективности системы холодотеплоснабжения, представлены ниже в виде таблиц и рисунков

.

Таблица 1 – Объемы солнечной энергии, аккумулируемые летом солнечным прудом (площадь 78,5 м2)

Параметр

Месяц

Всего

⅟₂IV V VI VII VIII IX
От прямого солнечного излучения, , МДж

От отраженного солнечного излучения, , МДж

От рассеянного солнечного излучения, , МДж

Аккумулированная рассолом пруда теплота, , МДж

Температура рассола, ⁰С*

КПД пруда летом, **

Всего теплоты, для летнего периода, , МДж

7639

7157

6408

21204

80

0,75

15903

19429

13752

16067

49248

85

0,80

39398

21600

13867

16265

51732

90

0,82

42420

19429

13752

16859

50040

95

0,80

40032

14508

13594

13910

42012

90

0,80

33610

8428

11599

9637

29664

85

0,72

21358

91033

73721

79146

243900

192721

*изменение аналогично изменению по месяцам температуре воздуха в Омске

**без учета выделения теплоты при кристаллизации воды вечером и ночью [6].

Таблица 2 – Показатели эксплуатации гелиохолодильника и системы горячего водоснабжения летом и теплоприводного теплового насоса зимой

№ п.п Наименование Размер Количество
Гелиохолодильник
1

2

3

4

5

6

7

8

Холодопроизводительность

Продолжительность работы по п. 1

Сезонная выработка холода по п. 2

Стоимость выработанного холода

Сметная стоимость сооружений и оборудования, отнесенных к установке

Сезонные эксплуатационные расходы и издержки производства

Постоянная численность обслуживающего персонала

Срок эксплуатации (число лет жизни проекта)

кВт

час.

МДж

руб.

руб.

руб.

чел.

лет

3,83 – 8,26

4032

97058

242645

837450*

40764

10

Система горячего водоснабжения
1

2

3

4

5

6

7

8

Расчетная теплопроизводительность

Продолжительность работы по п. 1

Сезонная выработка теплоты по п. 2

Стоимость выработанной теплоты

Сметная стоимость оборудования, отнесенная к системе горячего водоснабжения

Сезонные эксплуатационные расходы и издержки производства

Постоянная численность обслуживающего персонала

Срок эксплуатации (число лет жизни проекта)

кВт

час.

МДж

руб.

руб.

руб.

чел.

лет

2,4 – 5,3

4032

62353

77317

22260*

13094

10

Тепловой насос и рекуперированная теплота сгоревшего биометана
1

2

3

4

5

6

7

8

9

Установленная мощность системы

Продолжительность работы системы по п. 1

Сезонная выработка теплоты по п. 2

Стоимость выработанной теплоты

Сметная стоимость оборудования, отнесенная к системе

Сезонные эксплуатационные расходы и издержки производства

Сезонные затраты на топливо (при цене биометана 10 руб./м3)

Постоянная численность обслуживающего персонала

Срок эксплуатации (число лет жизни проекта)

кВт

час.

МДж

руб.

руб.

руб.

руб.

чел.

лет

11

4320

264820

164188

529223*

26482

52810

10

* с учетом стоимости монтажных и пуско-наладочных работ равных 20 % от стоимости оборудования (системы).

Исходя из значений таблиц 1 и 2, задавшись, при растущем рынке энергопотребления, ставкой дисконтирования 18 % определение дисконтированных чистых денежных поступлений или чистой приведенной величины дохода (), характеризующей общий, абсолютный результат инвестиционного проекта, проведено с учетом эколого-экономических преимуществ энергетики ВИЭ по предлагаемой автором формуле:

руб.

где – выгода (доход) от проекта в году , руб.; = 1,15 – коэффициент (минимальное его значение, равное ⅕ части от среднего) учитывающий эколого-экономической выгоды использования оборудования энергетики ВИЭ (Российские и зарубежные оценки прямых социальных-экономических затрат, связанных, с вредным воздействием электростанций, вырабатывающих электроэнергию за счет сжигания органического топлива: включая болезни и снижение продолжительности жизни людей; оплату медицинского обслуживания, потери производства, снижения урожая, восстановления лесов и ремонт зданий в результате загрязнения воздуха, воды и почвы дают величину, добавляющую около 75 % мировых цен на топливо и энергию. По источнику [7] эти затраты для угольных ТЭС выше); = 1,06 – коэффициент, учитывающий опережающий рост цен на произведенную энергию, а также сезонные эксплуатационные расходы и издержки, при производстве этой энергии; – затраты на проект в году , руб.; – ставка дисконта; – число лет жизни проекта.

Примечания:

1) величина коэффициента возрастает до значений (1,5 – 1,75) при возведении системы в пригородных, курортных, заповедных зонах и т.д.

2) значение коэффициента снижается по мере снижения, темпа роста стоимости генерируемых видов энергии в России.

3) ставка дисконта снижается по мере становления (развития) энергетики ВИЭ.

Результаты расчетов экономической эффективности системы холодотеплоснабжения сведены в таблицу 3.

Таблица 3 – Сводная таблица чистой приведенной величины дохода, тыс. руб.

Год

Затраты Рост стоимости энергии и издержек, Чистые доходы

Фактор дисконти-рования

Кап-вло-жения расходы,

издерж-ки

Все-го ,
1 0 1389 0 1389 –1389 0,847 –1176
2 лето 320 0 54 133 1,060 449 0,718 322
зима 164 79
3 лето 320 0 54 133 1,124 476 0,609 290
зима 164 79
4 лето 320 0 54 133 1,191 505 0,516 260
зима 164 79
5 лето 320 0 54 133 1,262 535 0,437 234
зима 164 79
6 лето 320 0 54 133 1,338 567 0,370 210
зима 164 79
7 лето 320 0 54 133 1,419 601 0,314 189
зима 164 79
8 лето 320 0 54 133 1,504 637 0,266 169
зима 164 79
9 лето 320 0 54 133 1,594 675 0,225 152
зима 164 79
10 лето 320 0

0

54 133 1,689 715 0,191 137
зима 164 79
Всего 787
Ликвидная стоимость выполненных работ и материалов:

выемки грунта под пруд и котлован

соли (смеси хлоридов магния и натрия)

46

15

Итого: чистая приведенная величина дохода, тыс. руб. 848

На основании сводной таблицы 3 построен финансовый профиль проекта, (рисунок 5)

Рисунок 5 – Финансовый профиль системы холодотеплоснабжения со ставкой дисконтирования 18 %

Без учета эколого-экономической выгоды использования проекта (коэффициента ) период возврата капитала составляет 6,5 лет.

А без учетов коэффициентов и период возврата капитала, за счет круглогодичного использования основных сооружений и оборудования системы, составляет 9 лет.

Рассмотренная система солнечного холодотеплоснабжения наглядно показывает, что у российской энергетики ВИЭ, основанной на использовании особенностей климатических условий средней полосы России, имеется хорошая обоснованность её будущего. Также рассмотренная система может с успехом применяться в горных районах юга России и СНГ. И как это не парадоксально но это относится к альтернативной энергетике, использующей солнечную и бросовую энергии.

Возможность использования двигателя Стирлинга для гелиохолодильника и системы теплоснабжения наглядно подтверждается завершенными работами компании Navien (Южная Корея) по созданию когенерационной установки малой мощности (30 кВт номинальной тепловой и 1 кВт электрической энергии). Модель котла (когенерационной установки) была разработана на базе экологически безопасного двигателя Стирлинга m-CHP с использованием конденсационного теплообменника, возвращающего скрытую теплоту продуктов сгорания. Максимальная рабочая температура энергоблока m-CHP составляет 85 ⁰С, максимальное рабочее давление — 3 бара [8].

Список литературы

1 Маврицкий Б.Ф. Геотермическая зональность Западно-Сибирского артезианского бассейна. Изв. АН СССР, серия геол. 1960. № 3, С. 72 – 83

2 Курчиков А.Р., Ставицкий Б.П. Геотермия нефтегазоносности областей Западной Сибири. М.: Недра, 1987. 134 с

3 Кузнецов П.А. Организационная надежность управления ресурсным обеспечением при переустройстве аварийных объектов // Жилищное строительство. 2006. № 1. С. 5 – 6.

4 Осадчий Г.Б. Нетрадиционные варианты хладотеплоснабжения зданий // Технология машиностроения. 2004. № 1. С. 50 – 54.

5 Осадчий Г.Б. Солнечная энергия, её производные и технологии их использования (Введение в энергетику ВИЭ). Омск: ИПК Макшеевой Е.А., 2010. 572 с.

6 Овчинников Б.М. и др. Схемы получения электроэнергии в тепловых машинах на основе возобновляемых источников тепла в природных водоёмах и атмосфере. Институт ядерных исследований РАН. Москва, 2003. Препринт ИЯИ — 1096/2003, март 2003.

7 Копылов А.Е. Экономические аспекты выбора системы поддержки использования возобновляемых источников энергии в России // Энергетик. 2008. № 1 С. 7 – 10.

8 Может ли газовый котёл производить электричество? Ответ даёт Navien // С.О.К. 2015. № 1 С. 9.

Автор: Осадчий Геннадий Борисович, инженер, автор 140 изобретений СССР.

Осадчий Г.Б., Гелиосистема холодотеплоснабжения

Источник: Портал по теплоснабжению, РосТепло.ру, www.rosteplo.ru

Оставить комментарий

Тематические закладки (теги)

Тематические закладки - служат для сортировки и поиска материалов сайта по темам, которые задают пользователи сайта.

Тематические закладки пользователей:

Tеги: геотермальная энергетика

Похожие статьи:

СИСТЕМА 
ДОБРОВОЛЬНОЙ ЭКСПЕРТИЗЫ 
СХЕМ ТЕПЛОСНАБЖЕНИЯ 
И ИНВЕСТИЦИОННЫХ ПРОГРАММ 
ТЕПЛОСНАБЖАЮЩИХ ОРГАНИЗАЦИЙ
Программы Auditor
Авторские права на размещенные материалы принадлежат авторам
Возрастная категория Интернет-сайта "18+"
© РосТепло.ru - Информационная система по теплоснабжению, 2003-2019
О проекте | Карта портала | Реклама на РосТепло.ru |
Top.Mail.Ru

Отраслевая конференция «Теплоснабжение-2019»

Москва, 22-24 октября 2019 г.
Примите участие!

Подробнее